咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Quantum-inspired bacterial for... 收藏

Quantum-inspired bacterial foraging algorithm for parameter adjustment in green cognitive radio

Quantum-inspired bacterial foraging algorithm for parameter adjustment in green cognitive radio

作     者:Hongyuan Gao Chenwan Li 

作者机构:School of Information and Communication Engineering Harbin Engineering University 

出 版 物:《Journal of Systems Science & Complexity》 (系统科学与复杂性学报(英文版))

年 卷 期:2015年第28卷第5期

页      面:897-907页

核心收录:

学科分类:080904[工学-电磁场与微波技术] 0810[工学-信息与通信工程] 07[理学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 080402[工学-测试计量技术及仪器] 0804[工学-仪器科学与技术] 070201[理学-理论物理] 081001[工学-通信与信息系统] 0702[理学-物理学] 

基  金:supported by the National Natural Science Foundation of China(61102106) the China Postdoctoral Science Foundation(2013M530148) the Heilongjiang Postdoctoral Fund(LBH-Z13054) the Fundamental Research Funds for the Central Universities(HEUCF140809) 

主  题:green cognitive radio parameter adjustment quantumcomputing bacterial foraging algorithm 

摘      要:Parameter adjustment that maximizes the energy efficiency of cognitive radio networks is studied in this paper where it can be investigated as a complex discrete optimization problem. Then a quantum-inspired bacterial foraging algorithm(QBFA)is proposed. Quantum computing has perfect characteristics so as to avoid local convergence and speed up the optimization of QBFA. A proof of convergence is also given for this *** superiority of QBFA is verified by simulations on three test functions. A novel parameter adjustment method based on QBFA is proposed for resource allocation of green cognitive radio. The proposed method can provide a globally optimal solution for parameter adjustment in green cognitive radio networks. Simulation results show the proposed method can reduce energy consumption effectively while satisfying different quality of service(Qo S)requirements.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分