Reconstruction of the Space-dependent Source from Partial Neumann Data for Slow Diffusion System
从为慢散开系统的部分 Neumann 数据的空间依赖者来源的重建作者机构:School of MathematicsS.T.Yau Center of Southeast UniversitySoutheast UniversityNanjing 210096China
出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))
年 卷 期:2020年第36卷第1期
页 面:166-182页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by NSFC(Nos.11971104,11871149) supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX180051)
主 题:time-fractional diffusion inverse source problem variational method Lipschitz stability
摘 要:Consider a linear inverse problem of determining the space-dependent source term in a diffusion equation with time fractional order derivative from the flux measurement specified in partial *** on the analysis on the forward problem and the adjoint problem with inhomogeneous boundary condition,a variational identity connecting the inversion input data with the unknown source function is *** uniqueness and the conditional stability for the inverse problem are proven by weak unique continuation and the variational identity in some *** inversion scheme minimizing the regularizing cost functional is implemented by using conjugate gradient method,with numerical examples showing the validity of the proposed reconstruction scheme.