Ageing mechanisms and reliability of graphene-based electrodes
Ageing mechanisms and reliability of graphene-based electrodes作者机构:Institute of Functional Nano & Soft Materials Soochow University 199 Ren-Ai Road Suzhou Industrial Park Suzhou Jiangsu 215123China
出 版 物:《Nano Research》 (纳米研究(英文版))
年 卷 期:2014年第7卷第12期
页 面:1820-1831页
核心收录:
学科分类:0810[工学-信息与通信工程] 0832[工学-食品科学与工程(可授工学、农学学位)] 08[工学] 081001[工学-通信与信息系统] 083202[工学-粮食、油脂及植物蛋白工程]
基 金:supported by the Beatriu de Pinos program of the 7th Framework Program in the European Union Paul C. Mclntyre from Stanford University is acknowledged for access to Auger electron spectroscopy Huiling Duan from Peking University is also acknowledged for scientific discussion
主 题:electrode local oxidation conductive atomic force microscopy (CAFM) tunneling
摘 要:The development of flexible transparent electrodes for next generation devices has been appointed as the major topic in carbon electronics research for the next five years. Among all candidate materials tested to date, graphene and graphene based nanocomposites have shown the highest performance. Although some incipient anti-oxidation tests have been reported, in-deep ageing studies to assess the reliability of carbon-based electrodes have never been performed before. In this work, we present a disruptive methodology to assess the ageing mechanisms of graphene electrodes, which is also extensible to other carbon- based and two-dimensional materials. After performing accelerated oxidative tests, we exhaustively analyze the yield of the electrodes combining nanoscale and device level experiments with Weibull probabilistic analyses and tunneling current simulation, based on the Fowler-Nordheim/Direct-Tunneling models. Our experiments and calculations reveal that an ultra-thin oxide layer can be formed on the pristine surface of graphene. We quantitatively analyze the consequences of this layer on the properties of the electrodes, and observed a change in the conduction mode at the interface (from Ohmic to Schottky), an effect that should be considered in the design of future graphene-based devices. Future mass production of carbon-based devices should include similar reliability studies, and the methodologies presented here (including the accelerated tests, characterization and modeling) may help other scientists to move from lab prototypes towards industrial device production.