咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A moving average Cholesky fact... 收藏

A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data

A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data

作     者:LIU XiaoYu ZHANG WeiPing 

作者机构:Department of Statistics and Finance School of ManagementUniversity of Science and Technology of China 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2013年第56卷第11期

页      面:2367-2380页

核心收录:

学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学] 

基  金:supported by National Natural Science Foundation of China(Grant Nos.11271347 and 11171321) 

主  题:moving average factor generalized estimating equation longitudinal data modeling of mean andcovariance structures 

摘      要:Modeling the mean and covariance simultaneously is a common strategy to efficiently estimate the mean parameters when applying generalized estimating equation techniques to longitudinal data. In this article, using generalized estimation equation techniques, we propose a new kind of regression models for parameterizing covariance structures. Using a novel Cholesky factor, the entries in this decomposition have moving average and log innovation interpretation and are modeled as the regression coefficients in both the mean and the linear functions of covariates. The resulting estimators for eovarianee are shown to be consistent and asymptotically normally distributed. Simulation studies and a real data analysis show that the proposed approach yields highly efficient estimators for the parameters in the mean, and provides parsimonious estimation for the covariance structure.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分