Strong Convergence Theorems for Strictly Asymptotically Pseudocontractive Mappings in Hilbert Spaces
Strong Convergence Theorems for Strictly Asymptotically Pseudocontractive Mappings in Hilbert Spaces作者机构:Department of Mathematics Yibin University Yibin 644007 P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2011年第27卷第7期
页 面:1367-1378页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by Natural Science Foundation of Yibin University (Grant No. 2007Z3)
主 题:Strictly asymptotically pseudocontractive mapping strictly pseudocontractive mapping of Browder Petryshyn type CSQ methods common fixed point
摘 要:The purpose of this paper is by using CSQ method to study the strong convergence problem of iterative sequences for a pair of strictly asymptotically pseudocontractive mappings to approximate a common fixed point in a Hilbert space. Under suitable conditions some strong convergence theorems are proved. The results presented in the paper are new which extend and improve some recent results of Acedo and Xu [Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal., 67(7), 2258-2271 (2007)], Kim and Xu [Strong convergence of modified Mann iterations for asymptoti- cally nonexpansive mappings and semigroups. Nonlinear Anal., 64, 1140-1152 (2006)], Martinez-Yanes and Xu [Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal., 64, 2400-2411 (2006)], Nakajo and Takahashi pings and nonexpansive semigroups. J. Math [Strong convergence theorems for nonexpansive map- Anal. Appl., 279, 372-379 (2003)], Marino and Xu [Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces. J. Math. Anal. Appl., 329(1), 336-346 (2007)], Osilike et al. [Demiclosedness principle and convergence theorems for k-strictly asymptotically pseudocontractive maps. J. Math. Anal. Appl., 326, 1334-1345 (2007)], Liu [Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings. Nonlinear Anal., 26(11), 1835-1842 (1996)], Osilike et al. [Fixed points of demi-contractive mappings in arbitrary Banach spaces. Panamer Math. J., 12(2), 77-88 (2002)], Gu [The new composite implicit iteration process strictly pseudocontractive mappings. J. Math with errors for common fixed points of a finite family of Anal. Appl., 329, 766-776 (2007)].