DISSIPATION AND DISPERSION APPROXIMATION TO HYDRODYNAMICAL EQUATIONS AND ASYMPTOTIC LIMIT
DISSIPATION AND DISPERSION APPROXIMATION TO HYDRODYNAMICAL EQUATIONS AND ASYMPTOTIC LIMIT作者机构:Academy of Mathematics and Systems Science CAS Beijing 100080 China Department of Mathematics Capital Normal University Beijing 100037 China
出 版 物:《Journal of Partial Differential Equations》 (偏微分方程(英文版))
年 卷 期:2008年第21卷第1期
页 面:59-76页
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:NNSFC Beijing Nova Program [2005B48] NCET support of the Ministry of Education of China Re Shi Bu Ke Ji Ze You program
主 题:Hydrodynamics degenerate viscosities dispersion limit.
摘 要:The compressible Euler equations with dissipation and/or dispersion correction are widely used in the area of applied sciences, for instance, plasma physics, charge transport in semiconductor devices, astrophysics, geophysics, etc. We consider the compressible Euler equation with density-dependent (degenerate) viscosities and capillarity, and investigate the global existence of weak solutions and asvmototic limit.