Mineralization and Ore-controlling Implications of Low-angle Faults
Mineralization and Ore-controlling Implications of Low-angle Faults作者机构:Institute of Geomechanics CAGS Beijing 100081 West Fujian Geological Party of FBEDGMR Sanming
出 版 物:《Acta Geologica Sinica(English Edition)》 (地质学报(英文版))
年 卷 期:1999年第73卷第4期
页 面:438-446页
核心收录:
学科分类:081803[工学-地质工程] 08[工学] 0818[工学-地质资源与地质工程]
主 题:low-angle fault ore-controlling structure structural metallogenesis geochemical interface of mineralization host structure
摘 要:Abstract Low-angle faults include those occurring in thrust-nappe structures in a compressive setting and the detachment of metamorphic core complexes in an extensional setting. All low-angle faults have their own particularities. The low-angle fault plays an important role in controlling over some endogenetic metallic ore deposits. Based on studies of the Xiaoban gold deposit, Xinzhou gold deposit, and Longfengchang polymetallic ore deposit, and comparisons with other mines, the authors conclude the ore-controlling implications of low-angle faults as follows. (1) Because of high temperature and high pressure, as well as strong ductile deformation, the internal energy of the elements rises in the large-scale deep ductile low-angle faults, which causes the elements to activate and differentiate from the source rocks, forming ore-bearing hydrothermal solution, and bring mineralization to happen. (2) When rising from depths and flowing along the low-angle faults, the ore-bearing hydrothermal solution will alter and replace the tectonites in the fault zone. The rocks of the hanging side and the heading side differ in lithology, texture and structure, which results in changes or dissimilarities of the physical-chemical conditions. This destroys the balance of the hydrothermal solution system and causes the dissolved ore-forming elements to precipitate; as a result, a deposit is formed. Therefore, the meso-shallow ductile-brittle low-angle faults play the role of a geochemical interface in the process of mineralization. (3) Low-angle faults are often one of the important host structures.