Exclusively catalytic oxidation of toluene to benzaldehyde in an O/W emulsion stabilized by hexadecylphosphate acid terminated mixed-oxide nanoparticles
十六烷基膦酸配合的复合氧化物纳米催化剂稳定的O/W乳液中甲苯单一氧化为苯甲醛(英文)作者机构:Key Laboratory of Mesoscopic ChemistrySchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing 210093JiangsuChina Luoyang R&D Center of TechnologySinopec Engineering(Group)Co.Ltd.Luoyang 471003HenanChina
出 版 物:《Chinese Journal of Catalysis》 (催化学报(英文))
年 卷 期:2020年第41卷第2期
页 面:341-349页
核心收录:
学科分类:081704[工学-应用化学] 07[理学] 070304[理学-物理化学(含∶化学物理)] 08[工学] 0817[工学-化学工程与技术] 0703[理学-化学]
基 金:supported by the National Natural Science Foundation of China(91434101,91745108) the Ministry of Science and Technology of the People’s Republic of China(2017YFB0702900)
主 题:Toluene oxidation Benzaldehyde Hexadecylphosphate acid Molecular oxygen Pickering
摘 要:A series of hexadecylphosphate acid(HDPA) terminated mixed-oxide nanoparticles have been investigated to catalyze the oxidation of toluene exclusive to benzaldehyde under mild conditions in an emulsion of toluene/water with the catalysts as stabilizers. With the HDPA-Fe2 O3/Al2 O3 as the basic catalyst, a series of transition metals, such as Mn, Co, Ni, Cu, Cr, Mo, V, and Ti, was respectively doped to the basic catalyst to modify the performance of the catalytic system, in expectation of influencing the mobility of the lattice oxygen species in the oxide catalysts. Under normally working conditions of the catalytic system, the nanoparticles of catalysts located themselves at the interface between the oil and water phases, constituting the Pickering emulsion. Both the doped iron oxide and its surface adsorbed hexadecylphosphate molecules were essential to the catalytic system for excellent performances with high toluene conversions as well as the exclusive selectivity to benzaldehyde. Under optimal conditions, ~83% of toluene conversion and 99% selectivity to benzaldehyde were obtained, using molecular oxygen as oxidant and HDPA-(Fe2 O3-Ni O)/Al2 O3 as the catalyst. This process is green and low cost to produce high quality benzaldehyde from O2 oxidation of toluene.