咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Developing energy forecasting ... 收藏

Developing energy forecasting model using hybrid artificial intelligence method

Developing energy forecasting model using hybrid artificial intelligence method

作     者:Shahram Mollaiy-Berneti 

作者机构:Young Researchers and Elites Club Bandar Abbas Branch Islamic Azad University 

出 版 物:《Journal of Central South University》 (中南大学学报(英文版))

年 卷 期:2015年第22卷第8期

页      面:3026-3032页

核心收录:

学科分类:0810[工学-信息与通信工程] 12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0806[工学-冶金工程] 081104[工学-模式识别与智能系统] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:energy demand artificial neural network back-propagation algorithm imperialist competitive algorithm 

摘      要:An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation(BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand(gross domestic product(GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand(population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分