基于改进Tiny-YOLO模型的群养生猪脸部姿态检测
Detection of facial gestures of group pigs based on improved Tiny-YOLO作者机构:山西农业大学信息科学与工程学院太谷030801 山西农业大学工学院太谷030801
出 版 物:《农业工程学报》 (Transactions of the Chinese Society of Agricultural Engineering)
年 卷 期:2019年第35卷第18期
页 面:169-179页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家高技术研究发展计划(863计划)资助项目(2013AA102306) 国家自然基金面上项目资助(31772651) 山西省重点研发计划专项(农业)(201803D221028-7)
主 题:图像处理 模型 目标检测 Tiny-YOLO 通道注意力 空间注意力
摘 要:生猪脸部包含丰富的生物特征信息,对其脸部姿态的检测可为生猪的个体识别和行为分析提供依据,而在生猪群养场景下,猪舍光照、猪只黏连等复杂因素给生猪脸部姿态检测带来极大挑战。该文以真实养殖场景下的群养生猪为研究对象,以视频帧数据为数据源,提出一种基于注意力机制与Tiny-YOLO相结合的检测模型DAT-YOLO。该模型将通道注意力和空间注意力信息引入特征提取过程中,高阶特征引导低阶特征进行通道注意力信息获取,低阶特征反向指引高阶特征进行空间注意力筛选,可在不显著增加参数量的前提下提升模型特征提取能力、提高检测精度。对5栏日龄20~105d的群养生猪共35头的视频抽取504张图片,共计3712个脸部框,并标注水平正脸、水平侧脸、低头正脸、低头侧脸、抬头正脸和抬头侧脸6类姿态,构建训练集,另取420张图片共计2106个脸部框作为测试集。试验表明,DAT-YOLO模型在测试集上对群养生猪的水平正脸、水平侧脸、低头正脸、低头侧脸、抬头正脸和抬头侧脸6类姿态预测的AP值分别达到85.54%、79.30%、89.61%、76.12%、79.37%和84.35%,其6类总体mAP值比Tiny-YOLO模型、仅引入通道注意力的CAT-YOLO模型以及仅引入空间注意力的SAT-YOLO模型分别提高8.39%、4.66%和2.95%。为进一步验证注意力在其余模型上的迁移性能,在同等试验条件下,以YOLOV3为基础模型分别引入两类注意力信息构建相应注意力子模型,试验表明,基于Tiny-YOLO的子模型与加入相同模块的YOLOV3子模型相比,总体mAP指标提升0.46%~1.92%。Tiny-YOLO和YOLOV3系列模型在加入注意力信息后检测性能均有不同幅度提升,表明注意力机制有利于精确、有效地对群养生猪不同类别脸部姿态进行检测,可为后续生猪个体识别和行为分析提供参考。