咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >GENERALIZATION PERFORMANCE OF ... 收藏

GENERALIZATION PERFORMANCE OF MULTI-CATEGORY KERNEL MACHINES——In Memory of Professor Sun Yongsheng

GENERALIZATION PERFORMANCE OF MULTI-CATEGORY KERNEL MACHINES——In Memory of Professor Sun Yongsheng

作     者:Hong Chen Luoqing Li 

作者机构:Faculty of Mathematics and Computer Science Hubei University Wuhan 430062 E R. China 

出 版 物:《Analysis in Theory and Applications》 (分析理论与应用(英文刊))

年 卷 期:2007年第23卷第2期

页      面:188-195页

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Supported in part by the Specialized Research Fund for the Doctoral Program of Higher Education under grant 20060512001 

主  题:Kernel machine uniform stability generalization error 

摘      要:Support vector machines are originally designed for binary classification. How to effectively extend it for multi-class classification is still an on-going research issue. In this paper, we consider kernel machines which are natural extensions of multi-category support vector machines originally proposed by Crammer and Singer. Based on the algorithm stability, we obtain the generalization error bounds for the kernel machines proposed in the paper.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分