咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Geometric characterization for... 收藏

Geometric characterization for the least Lagrangian action of n-body problems

Geometric characterization for the least Lagrangian action of n-body problems

作     者:张世清 周青 ZHANG Shiqing;ZHOU Qing

作者机构:1. Department of Mathematics Chongqing University 400044 Chongqing China 2. Department of Mathematics East China Normal University 200062 Shanghai China 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2001年第44卷第1期

页      面:15-20页

核心收录:

学科分类:07[理学] 070402[理学-天体测量与天体力学] 0704[理学-天文学] 

基  金:This work was supported by MSTC  the National Natural Science Foundation of China and QSSTF 

主  题:n-body problems Lagrangian action integral homographic solutions 

摘      要:For n-body problems with quasihomogeneous potentials in ?k (2[ n/2] ? k) we prove that the minimum of the Lagrangian action integral defined on the zero mean loop space is exactly the circles with center at the origin and the configuration of the n-bodies is always a regular n - 1 simplex with fixed side length.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分