Geometric characterization for the least Lagrangian action of n-body problems
Geometric characterization for the least Lagrangian action of n-body problems作者机构:1. Department of Mathematics Chongqing University 400044 Chongqing China 2. Department of Mathematics East China Normal University 200062 Shanghai China
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2001年第44卷第1期
页 面:15-20页
核心收录:
学科分类:07[理学] 070402[理学-天体测量与天体力学] 0704[理学-天文学]
基 金:This work was supported by MSTC the National Natural Science Foundation of China and QSSTF
主 题:n-body problems Lagrangian action integral homographic solutions
摘 要:For n-body problems with quasihomogeneous potentials in ?k (2[ n/2] ? k) we prove that the minimum of the Lagrangian action integral defined on the zero mean loop space is exactly the circles with center at the origin and the configuration of the n-bodies is always a regular n - 1 simplex with fixed side length.