Conditional Lie Backlund Symmetries of Hamilton-Jacobi Equations
Conditional Lie Backlund Symmetries of Hamilton-Jacobi Equations作者机构:Center for Nonlinear Studies Northwest University Xi'an 710069 Department of Mathematics Northwest University Xi'an 710069
出 版 物:《Chinese Physics Letters》 (中国物理快报(英文版))
年 卷 期:2007年第24卷第12期
页 面:3293-3296页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Supported by the National Natural Science Foundation of China under Grant No 10671156 and the Programme for New Century Excellent Talents in University (NCET-04-0968)
主 题:Conditional Lie Backlund Symmetries Hamilton-Jacobi Equations
摘 要:The conditional Lie Bgcklund symmetry method, as a generalization of the conditional symmetry and Lie Bgcklund symmetry methods, is developed to study the Hamilton-Jacobi equations. It is shown that the equation ut = ux^n+1 4- B(u)ux 4- C(u) admits a class of conditional Lie Bgcklund symmetry for certain functions B(u) and C(u). As a result, a complete description of structure of solutions to the resulting equations associated to the conditional Lie Backlund symmetry is performed.