ε再生现象,p-a对与Markov转移概率
ε-REGENERATIVE PHENOMENA, p-α PAIRS AND MARKOV TRANSITION PROBABILITIES作者机构:海南师范学院数学系571158 中山大学数学系510275
出 版 物:《应用概率统计》 (Chinese Journal of Applied Probability and Statistics)
年 卷 期:1994年第10卷第1期
页 面:15-21页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:国家自然科学基金及海南省自然科学基金部分资助 国家自然科学基金及中山大学科研基金部分资助
摘 要:设对每一正数t, E(t)和A(t)是不相交事件,分别以J_1(t),J_2(t),J_2(t)记E(t)A(t),E(t)UA(t),以J(t,L)记(?)J_l(t),其中L(?){1,2,3}。如果对任意的00}是(?)再生现象,(p(t),a(t))是对应的P-a对,其中p(t):=P(E(t)),a(t):=P(A(t))设(?)p(t)=1 则(p(t),a(t))是p-a对当且仅当存在Markov转移函数P_t(·,·),标准状态x,可测集B,x(?)B,使P(t)=P_t,(x,{x}),a(t)=P_t(x,B);当且仅当a(t)连续,p(t)是p函数(设有典型测度μ),存在可测函数g(s)满足0≤g(s)≤μ(s,∞]和a(t)=integral from n=0 to t(p(t-s)g(s)ds).p-a对的积和极限仍为p-a对.给出p-a对为有限可分解和为不可分解的充分条件.