咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Exact solutions of a(2+1)-dime... 收藏

Exact solutions of a(2+1)-dimensional extended shallow water wave equation

Exact solutions of a(2+1)-dimensional extended shallow water wave equation

作     者:Feng Yuan Jing-Song He Yi Cheng 袁丰;贺劲松;程艺

作者机构:School of Mathematical SciencesUniversity of Science and Technology of ChinaHefei 230026China Institute for Advanced StudyShenzhen UniversityShenzhen 518060China 

出 版 物:《Chinese Physics B》 (中国物理B(英文版))

年 卷 期:2019年第28卷第10期

页      面:237-244页

核心收录:

学科分类:07[理学] 0702[理学-物理学] 

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.11671219 and 11871446) 

主  题:(2+1)-dimensional extended shallow water wave equation Hirota bilinear method dormion-type solution 

摘      要:We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分