Hormander Type Multipliers on Anisotropic Hardy Spaces
H?rmander Type Multipliers on Anisotropic Hardy Spaces作者机构:School of Mathematical SciencesChongqing Normal UniversityChongqing 401131P.R.China School of Mathematical SciencesBeijing Normal UniversityBeijing 100875P.R.China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2019年第35卷第11期
页 面:1841-1853页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported partly by NNSF of China(Grant No.11371056) supported by NNSF of China(Grant No.11801049) Technology Pro ject of Chongqing Education Committee(Grant No.KJQN201800514)
主 题:Hormander multiplier Littlewood-Paley’s inequality anisotropic Hardy space anisotropic Sobolev spaces
摘 要:The main purpose of this paper is to establish, using the Littlewood–Paley–Stein theory(in particular, the Littlewood–Paley–Stein square functions), a Calderón–Torchinsky type theorem for the following Fourier multipliers on anisotropic Hardy spaces Hp(Rn;A) associated with expensive dilation A:■Our main Theorem is the following: Assume that m(ξ) is a function on Rn satisfying ■with s ζ--1(1/p-1/2). Then Tm is bounded from Hp(Rn;A) to Hp(Rn;A) for all 0 p ≤ 1 and ■where A* denotes the transpose of A. Here we have used the notations mj(ξ) = m(A*jξ)φ(ξ) and φ(ξ) is a suitable cut-off function on Rn, and Ws(A*) is an anisotropic Sobolev space associated with expansive dilation A* on Rn.