ZERO SET OF SOBOLEV FUNCTIONS WITH NEGATIVE POWER OF INTEGRABILITY
ZERO SET OF SOBOLEV FUNCTIONS WITH NEGATIVE POWER OF INTEGRABILITY作者机构:CourantInstitute251MercerStreetNewYorkNY10009USA.
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:2004年第25卷第1期
页 面:65-72页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Singular elliptic equation Poincare inequality Thin film Partial regu- larity Zero set Rupture set Hausdorff dimension
摘 要:Here the authors are interested in the zero set of Sobolev functions and functions of bounded variation with negative power of integrability. The main result is a general Hausdorff dimension estimate on the size of zero set. The research is motivated by the model on van der waal force driven thin film, which is a singular elliptic equation. After obtaining some basic regularity result, the authors get an estimate on the size of singular set; such set corresponds to the thin film rupture set in the thin film model.