COMPUTATIONAL ISSUES IN SENSITIVITY ANALYSIS FOR 1-D INTERFACE PROBLEMS
COMPUTATIONAL ISSUES IN SENSITIVITY ANALYSIS FOR 1-D INTERFACE PROBLEMS作者机构:Montana State University Department of Mathematical Sciences PO Box 172400 Bozeman MT 59717-2400 USA Missouri University of Science and Technology Department of Mathematics and Statistics 300 W. 12th St. Rolla MO 65409 0020 USA
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:2011年第29卷第1期
页 面:108-130页
核心收录:
学科分类:081803[工学-地质工程] 07[理学] 08[工学] 0818[工学-地质资源与地质工程] 070104[理学-应用数学] 0714[理学-统计学(可授理学、经济学学位)] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Finite element method Interface Problems Sensitivity Equation.
摘 要:This paper is concerned with the construction of accurate and efficient computational algorithms for the numerical approximation of sensitivities with respect to a parameter dependent interface location. Motivated by sensitivity analysis with respect to piezoelectric actuator placement on an Euler-Bernonlli beam, this work illustrates the key concepts related to sensitivity equation formulation for interface problems where the parameter of interest determines the location of the interface. A fourth order model problem is considered, and a homogenization procedure for sensitivity computation is constructed using standard finite clement methods. Numerical results show that proper formulation and approximation of the sensitivity interface conditions is critical to obtaining convergent numerical sensitivity approximations. A second order elliptic interface model problem is also mentioned, and the homogenization procedure is outlined briefly for this model.