Hybrid quantum particle swarm optimization algorithm and its application
Hybrid quantum particle swarm optimization algorithm and its application作者机构:School of Chemical EngineeringUniversity of Science and Technology Liaoning School of Electronic and Information EngineeringUniversity of Science and Technology Liaoning
出 版 物:《Science China(Information Sciences)》 (中国科学:信息科学(英文版))
年 卷 期:2020年第63卷第5期
页 面:203-205页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by National Natural Science Foundation of China (Grant Nos. 71571091 71771112 61473054)
主 题:Hybrid quantum particle swarm optimization algorithm and its application
摘 要:Dear editor,Quantum-behaved particle swarm optimization(QPSO) is an evolutionary algorithm with quantum behavior. It can be used to solve optimization problems by establishing a potential well at the local attraction point to influence the location of particles [1, 2]. The algorithm offers many advantages, such as the requirement of a few parameters,simple operation, and strong convergence ability.