The generalized Bouleau-Yor identity for a sub-fractional Brownian motion
The generalized Bouleau-Yor identity for a sub-fractional Brownian motion作者机构:Department of Mathematics College of Science Donghua University Department of Mathematics East China University of Science and Technology
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2013年第56卷第10期
页 面:2089-2116页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 070104[理学-应用数学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:supported by National Natural Science Foundation of China(Grant No.11171062) Innovation Program of Shanghai Municipal Education Commission(Grant No.12ZZ063)
主 题:sub-fractional Brownian motion Malliavin calculus local time Ito's formula quadratic covaria-tion
摘 要:Let SH be a sub-fractional Brownian motion with index 0 〈 H 〈 1/2. In this paper we study the existence of the generalized quadratic eovariation [f(SH), SH](W) defined by[f(SH),SH]t(W)=lim ε↓0 1/ ε2H ∫t 0 {f(SH s+ε)-f(SH s+ε)-f(SH s)}(SH s+ε -SH s)ds2H, provided the limit exists in probability, where x → f(x) is a measurable function. We construct a Banach space X of measurable functions such that the generalized quadratic covariation exists in L2 provided f ∈ X. Moreover, the generalized Bouleau-Yor identity takes the form -∫R f(x) H(dx,t)=(2-2 2H-1)[f(SH ),SH]t(w) for all f ∈ where H (X, t) is the weighted local time of SH. This allows us to write the generalized ItS's formula for absolutely continuous functions with derivative belonging to .