Self-adapting Scalable Differential Evolution Algorithm
Self-adapting Scalable Differential Evolution Algorithm作者机构:Department of Computer Science and EngineeringHenan University of Urban Construction Glorious Sun School of Business and ManagementDonghua University
出 版 物:《Journal of Donghua University(English Edition)》 (东华大学学报(英文版))
年 卷 期:2011年第28卷第4期
页 面:384-390页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Natural Science Foundation of China (No. 70971020)
主 题:differential evolution (DE) scalable self-adapting parameter control function optimization
摘 要:Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter *** improved method,self-adapting scalable DE(SSDE) algorithm,is *** vector generation strategies and crossover probability are respectively self-adapted by two operators in this ***,to enhance the convergence rate,vectors selected randomly with the optimal fitness values are introduced to guide searching *** problems are used to verify this *** with other well-known DE algorithms,experiment results indicate that this algorithm is better than other DE algorithms in terms of convergence rate and quality of optimization.