Smallest Close to Regular Bipartite Graphs without an Almost Perfect Matching
Smallest Close to Regular Bipartite Graphs without an Almost Perfect Matching作者机构:Lehrstuhl Ⅱ für Mathematik RWTH Aachen University
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2010年第26卷第8期
页 面:1403-1412页
核心收录:
学科分类:07[理学] 08[工学] 080203[工学-机械设计及理论] 070104[理学-应用数学] 0802[工学-机械工程] 0701[理学-数学]
主 题:Almost perfect matching bipartite graph close to regular graph
摘 要:A graph G is close to regular or more precisely a (d, d + k)-graph, if the degree of each vertex of G is between d and d + k. Let d ≥ 2 be an integer, and let G be a connected bipartite (d, d+k)-graph with partite sets X and Y such that |X|- |Y|+1. If G is of order n without an almost perfect matching, then we show in this paper that·n ≥ 6d +7 when k = 1,·n ≥ 4d+ 5 when k = 2,·n ≥ 4d+3 when k≥*** will demonstrate that the given bounds on the order of G are the best possible.