A New Clustering Algorithm for Categorical Attributes
A New Clustering Algorithm for Categorical Attributes作者机构:College of Computer Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
出 版 物:《International Journal of Minerals,Metallurgy and Materials》 (矿物冶金与材料学报(英文版))
年 卷 期:2000年第14卷第4期
页 面:318-322页
核心收录:
学科分类:11[军事学] 0810[工学-信息与通信工程] 1105[军事学-军队指挥学] 08[工学] 081002[工学-信号与信息处理] 110503[军事学-军事通信学]
主 题:data mining clustering similarity Information
摘 要:In traditional data clustering, similarity of a cluster of objects is measured by distance between objects. Such measures are not appropriate for categorical data. A new clustering criterion to determine the similarity between points with categorical attributes is pre- sented. Furthermore, a new clustering algorithm for categorical attributes is addressed. A single scan of the dataset yields a good clus- tering, and more additional passes can be used to improve the quality further.