NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS
非线性的期望和非线性的 MARKOV 链作者机构:School of Mathematics and System ScienceShandong UniversityJinan 250100China
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:2005年第26卷第2期
页 面:159-184页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:Project supported by the National Natural Science Foundation of China(No.10131040)
主 题:Backward stochastic differential equations Nonlinear expectation Non-linear expected utilities Measure of risk g-expectation Nonlinear Mar-kov chain g-martingale Nonlinear martingale Nonlinear Kolmogorov’s consistent theorem Doob-Meyer decomposition
摘 要:This paper deals with nonlinear expectations. The author obtains a nonlinear gen- eralization of the well-known Kolmogorov’s consistent theorem and then use it to con- struct ?ltration-consistent nonlinear expectations via nonlinear Markov chains. Com- pared to the author’s previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probabil- ity measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations. The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures.