A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters
A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters作者机构:Faculty of Electrical and Computer EngineeringShahid Beheshti University
出 版 物:《Journal of Zhejiang University-Science C(Computers and Electronics)》 (浙江大学学报C辑(计算机与电子(英文版))
年 卷 期:2011年第12卷第8期
页 面:638-646页
核心收录:
学科分类:0810[工学-信息与通信工程] 0808[工学-电气工程] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by the Renewable Energy Organization of Iran (SANA)
主 题:Proton exchange membrane fuel cell stack model Parameter optimization Artificial bee swarm optimization algorithm
摘 要:An appropriate mathematical model can help researchers to simulate,evaluate,and control a proton exchange membrane fuel cell (PEMFC) stack *** a PEMFC is a nonlinear and strongly coupled system,many assumptions and approximations are considered during ***,some differences are found between model results and the real performance of *** increase the precision of the models so that they can describe better the actual performance,opti-mization of PEMFC model parameters is *** this paper,an artificial bee swarm optimization algorithm,called ABSO,is proposed for optimizing the parameters of a steady-state PEMFC stack model suitable for electrical engineering *** studying the usefulness of the proposed algorithm,ABSO-based results are compared with the results from a genetic algo-rithm (GA) and particle swarm optimization (PSO).The results show that the ABSO algorithm outperforms the other algorithms.