咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A moving object segmentation a... 收藏

A moving object segmentation algorithm for static camera via active contours and GMM

A moving object segmentation algorithm for static camera via active contours and GMM

作     者:WAN ChengKai YUAN BaoZong MIAO ZhenJiang 

作者机构:Institute of Information Science Beijing Jiaotong University Beijing 100044 China 

出 版 物:《Science in China(Series F)》 (中国科学(F辑英文版))

年 卷 期:2009年第52卷第2期

页      面:322-328页

核心收录:

学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程] 

基  金:Supported by National Basic Research Program of China (Grant No.2006CB303105) the Chinese Ministry of Education Innovation Team Fund Project (Grant No.IRT0707) the National Natural Science Foundation of China (Grant Nos.60673109 and 60801053) Beijing Excellent Doctoral Thesis Program (Grant No. YB20081000401) Beijing Municipal Natural Science Foundation (Grant No.4082025) Doctoral Foundation of China (Grant No.20070004037) 

主  题:moving object segmentation active contours GMM, level set 

摘      要:Moving object segmentation is one of the most challenging issues in computer vision. In this paper, we propose a new algorithm for static camera foreground segmentation. It combines Gaussian mixture model (GMM) and active contours method, and produces much better results than conventional background subtraction methods. It formulates foreground segmentation as an energy minimization problem and minimizes the energy function using curve evolution method. Our algorithm integrates the GMM background model, shadow elimination term and curve evolution edge stopping term into energy function. It achieves more accurate segmentation than existing methods of the same type. Promising results on real images demonstrate the potential of the presented method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分