Co-Hopfian Modules of Generalized Inverse Polynomials
Co-Hopfian Modules of Generalized Inverse Polynomials作者机构:Department of Mathematics Northwest Normal University Lanzhou 730070 P. R. China Department of Economics Northwest Normal University Lanzhou 730070 P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2001年第17卷第3期
页 面:431-436页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Research supported by National Natural Science Foundation of China 19671063
主 题:Co-Hopfian module Generalized power series Generalized inverse polynomials
摘 要:Let R be an associative ring not necessarily possessing an identity and (S,≤) a strictly totally ordered monoid which is also artinian and satisfies that 0≤s for any s∈*** that M is a left R-module having property (F).It is shown that M is a co-Hopfian left R-module if and only if [MS,≤]is a co-Hopfan left [[RS,≤]]-module.