Stationary distribution and periodic solution of stochastic chemostat models with single-species growth on two nutrients
作者机构:College of ScienceChina University o/Petroleum(Haul China)Qingdao 266580P.R.China Keg laboratory of Unconventional Oil and Cos Development China University of Petroleum(East China)Ministry of Education.Qingdao 260580.P.It.China Nonlinear Analysis and Applied Mathematics(NAAM)-Research Group Department of Mathematics.King Abdulaziz University Jeddah 21589Saudi Arabia Department of MathematicsQuaid-I-Azam University 45320 Islamabad 44000.Pakistan
出 版 物:《International Journal of Biomathematics》 (生物数学学报(英文版))
年 卷 期:2019年第12卷第6期
页 面:23-41页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:the National Natural Science Foundation of P.R.China(No.11871473)
主 题:Chemostat model Lyapunov function stationary distribution Markov pro cess periodic solution.
摘 要:In this paper,we consider two chemostat models w th random perturbation,in which single species depends on two perfectly substitutable resources for *** the autonomous system,we first prove that the solution of the system is positive and *** we establish sufficient conditions for the existence of an ergodic stationary distribu tion by constructing appropriate Lyapunov functions-For the non-autonomous system,by using Mas minskii theory on periodic Markov processes,we derive it admits a nontriv ial positive periodic ***,numerical simulations are carried out to illustrate our main results.