咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >On Diagonalization of Idempote... 收藏

On Diagonalization of Idempotent Matrices over APT Rings

APT环上幂等阵的对角化(英文)

作     者:郭学军 宋光天 GUO Xue-jun;SONG Guang-tian

作者机构:中国科学技术大学数学系安徽合肥230026 

出 版 物:《Journal of Mathematical Research and Exposition》 (数学研究与评论(英文版))

年 卷 期:2001年第21卷第1期

页      面:21-26页

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Abelian ring APT ring idempotent matrix. 

摘      要:Let R be an abelian ring (all idempotents of R lie in the center of R), and A be an idempotent matrix over R. The following statements are proved: (a). A is equivalent to a diagonal matrix if and only if A is similar to a diagonal matrix. (b). If R is an APT (abelian projectively trivial) ring, then A can be uniquely diagonalized as diag{el, ..., en} and ei divides ei+1. (c). R is an APT ring if and only if R/I is an APT ring, where I is a nilpotent ideal of R. By (a), we prove that a separative abelian regular ring is an APT ring.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分