Local Discontinuous Galerkin Method for Parabolic Interface Problems
Local Discontinuous Galerkin Method for Parabolic Interface Problems作者机构:Department of Mathematics Nanchang University Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics
出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))
年 卷 期:2015年第31卷第2期
页 面:453-466页
核心收录:
学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学]
基 金:Supported by the National Natural Science Foundation of China(Grant No.11171038) Youth Foundation of Tianyuan Mathematics(Grant No.11126279) The Science Foundation of China Academy of Engineering Physics(Grant No.2013A0202011) Defense Industrial Technology Development Program(Grant No.B1520133015)
主 题:parabolic interface problem minimal dissipation local discontinuous Galerkin method error estimates
摘 要:In this paper, the minimal dissipation local discontinuous Galerkin method is studied to solve the parabolic interface problems in two-dimensional convex polygonal domains. The interface may be arbitrary smooth curves. The proposed method is proved to be L2 stable and the order of error estimates in the given norm is O(h|logh|^1/2). Numerical experiments show the efficiency and accuracy of the method.