咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >ASYMPTOTIC HOMOGENIZATION IN A... 收藏

ASYMPTOTIC HOMOGENIZATION IN A PARABOLIC SEMILINEAR PROBLEM WITH PERIODIC COEFFICIENTS AND INTEGRABLE INITIAL DATA

ASYMPTOTIC HOMOGENIZATION IN A PARABOLIC SEMILINEAR PROBLEM WITH PERIODIC COEFFICIENTS AND INTEGRABLE INITIAL DATA

作     者:Rogerio Luiz Quintino de OLIVEIRA JUNIOR 

作者机构:Instituto de Matema'tica e Estat' stica Universidade do Estado do R.de Janeiro Rua S ao Francisco Xavier524 - Pavilha o Reitor Joa o Lyra Filho 6oandar bl.B 20559-900 Rio de Janeiro R.J. Brazil 

出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))

年 卷 期:2013年第33卷第5期

页      面:1275-1292页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Supported by CNPq-Conselho Nacional de Desenvolvimento Cient'fico e Tecnológico 

主  题:homogenization similinear parabolic equation integrable initial data matrix with periodic coefficient large time behavior 

摘      要:In this paper, we study the large time behavior of solutions of the parabolic semilinear equation δtu-div(a(x)△↓u) = -|u|^αu in (0,∞) × R^N, where α 〉 0 is constant and a∈ Cb^1(R^N) is a symmetric periodic matrix satisfying some ellipticity *** an integrable initial data u0 and α ∈ (2/N, 3/N), we prove that the large time behavior of solutions is given by the solution U(t, x) of the homogenized linear problem δtU-div(a^h△↓U)=0,U(0) = C, where a^h is the homogenized matrix of a(x), C is a positive constant and δ is the Dirac measure at 0.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分