ASYMPTOTIC HOMOGENIZATION IN A PARABOLIC SEMILINEAR PROBLEM WITH PERIODIC COEFFICIENTS AND INTEGRABLE INITIAL DATA
ASYMPTOTIC HOMOGENIZATION IN A PARABOLIC SEMILINEAR PROBLEM WITH PERIODIC COEFFICIENTS AND INTEGRABLE INITIAL DATA作者机构:Instituto de Matema'tica e Estat' stica Universidade do Estado do R.de Janeiro Rua S ao Francisco Xavier524 - Pavilha o Reitor Joa o Lyra Filho 6oandar bl.B 20559-900 Rio de Janeiro R.J. Brazil
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2013年第33卷第5期
页 面:1275-1292页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by CNPq-Conselho Nacional de Desenvolvimento Cient'fico e Tecnológico
主 题:homogenization similinear parabolic equation integrable initial data matrix with periodic coefficient large time behavior
摘 要:In this paper, we study the large time behavior of solutions of the parabolic semilinear equation δtu-div(a(x)△↓u) = -|u|^αu in (0,∞) × R^N, where α 〉 0 is constant and a∈ Cb^1(R^N) is a symmetric periodic matrix satisfying some ellipticity *** an integrable initial data u0 and α ∈ (2/N, 3/N), we prove that the large time behavior of solutions is given by the solution U(t, x) of the homogenized linear problem δtU-div(a^h△↓U)=0,U(0) = C, where a^h is the homogenized matrix of a(x), C is a positive constant and δ is the Dirac measure at 0.