咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Advances in active fire detect... 收藏

Advances in active fire detection using a multi-temporal method for next-generation geostationary satellite data

为下一代的地球同步的卫星数据用一个多时间的方法在活跃的火察觉进展

作     者:Bryan Hally Luke Wallace Karin Reinke Simon Jones Andrew Skidmore 

作者机构:School of ScienceRMIT UniversityMelbourneAustralia Bushfire and Natural Hazards Cooperative Research CentreMelbourneAustralia Faculty for Geo-Information Science and Earth Observation(ITC)University of TwenteEnschedeNetherlands Department of Environmental ScienceMacquarie UniversitySydneyAustralia 

出 版 物:《International Journal of Digital Earth》 (国际数字地球学报(英文))

年 卷 期:2019年第12卷第9期

页      面:1030-1045页

核心收录:

学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 

基  金:Australian Bureau of Meteorology Japanese Meteorological Agency Bushfire Cooperative Research Centre 

主  题:Fire detection diurnal variation geostationary sensors broad area training advanced himawari imager 

摘      要:A vital component of fire detection from remote sensors is the accurateestimation of the background temperature of an area in fire’s absence,assisting in identification and attribution of fire activity. Newgeostationary sensors increase the data available to describebackground temperature in the temporal domain. Broad area methodsto extract the expected diurnal cycle of a pixel using this temporally richdata have shown potential for use in fire detection. This paper describesan application of a method for priming diurnal temperature fitting ofimagery from the Advanced Himawari Imager. The BAT method is usedto provide training data for temperature fitting of target pixels, to whichthresholds are applied to detect thermal anomalies in 4 μm imageryover part of Australia. Results show the method detects positive thermalanomalies with respect to the diurnal model in up to 99% of caseswhere fires are also detected by Low Earth Orbiting (LEO) satellite activefire products. In absence of LEO active fire detection, but where aburned area product recorded fire-induced change, this method alsodetected anomalous activity in up to 75% of cases. Potentialimprovements in detection time of up to 6 h over LEO products are alsodemonstrated.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分