咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Highly efficient H^1-Galerkin ... 收藏

Highly efficient H^1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation

Highly efficient H^1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation

作     者:石东洋 廖歆 唐启立 Dong-yang SHI;Xin LIAO;Qi-li TANG

作者机构:School of Mathematics and Statistics Zhengzhou University 

出 版 物:《Applied Mathematics and Mechanics(English Edition)》 (应用数学和力学(英文版))

年 卷 期:2014年第35卷第7期

页      面:897-912页

核心收录:

学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学] 

基  金:Project supported by the National Natural Science Foundation of China(Nos.10971203,11271340,and 11101381) the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006) 

主  题:parabolic integro-differential equation H1-Galerkin mixed finite elementmethod (MFEM) linear triangular element asymptotic expansion superconvergence andextrapolation 

摘      要:A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分