燃煤锅炉NO_x排放浓度的智能预报
Intelligent Prediction of the NO_x Emissions Concentration of a Coalfired Boiler作者机构:东南大学能源与环境学院江苏南京210096
出 版 物:《热能动力工程》 (Journal of Engineering for Thermal Energy and Power)
年 卷 期:2014年第29卷第3期
页 面:279-283,343页
核心收录:
学科分类:080703[工学-动力机械及工程] 08[工学] 0807[工学-动力工程及工程热物理]
摘 要:在热态试验数据的基础上,分别应用BP(神经网络)和SVM(支持向量机)回归算法建立了燃煤机锅炉NOx排放特性模型,并验证了模型的准确性。结果表明,BP网络模型对检验样本的最大预测误差、最小预测误差和均方差分别为4.263%、0.556%和2.2133%,支持向量机模型对检验样本的最大预测误差、最小预测误差和均方差分别为2.121%、0.091%和0.4549%。两种智能技术都能对锅炉在不同工况下的NOx排放做出较为准确的预报,但支持向量机在泛化能力、收敛速度、最优性等方面明显优于神经网络。