面向卫星遥测数据流的最小稀有模式挖掘方法
Minimal Rare Pattern Mining Method For Satellite Telemetry Data Streams作者机构:南京航空航天大学计算机科学与技术学院
出 版 物:《计算机学报》 (Chinese Journal of Computers)
年 卷 期:2019年第42卷第6期
页 面:1351-1366页
核心收录:
学科分类:08[工学] 0835[工学-软件工程] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:国家自然科学基金(U1433116) 中央高校基本科研业务费专项资金(NP2017208) 南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20181605)资助~~
主 题:最小稀有模式 卫星 遥测数据流 自顶向下 自底向上 双向遍历 模式挖掘 数据挖掘
摘 要:模式挖掘是应用于卫星智能监控服务中的一项重要技术.当前频繁模式挖掘的使用率要远远高于稀有模式挖掘,然而对于卫星遥测数据流来说,频繁模式挖掘在安全监测和故障预防等方面所取得的成效不如稀有模式挖掘.因为频繁模式挖掘无法从卫星的遥测数据中揭示卫星可能存在的潜在故障.卫星遥测是持续不断进行的,所以其数据流存在数据量大、传输速度快和数据重复性高的特点.如果采用一般的稀有模式挖掘方法来挖掘卫星数据流,尽管其速度比频繁模式挖掘快,但总体上仍然较慢,不能满足卫星实时监测的需要.针对上述问题,本文提出一种可快速找出卫星遥测数据流中隐藏信息的最小稀有模式挖掘方法,它具有如下优点:(1)无需卫星领域知识;(2)引用滑动窗口技术并将主观参数(窗口尺寸)客观化,使得算法能够实时地处理数据流;(3)通过仅挖掘最小稀有模式方式来提高算法的挖掘效率;(4)该算法使用双向遍历技术提高算法的运行速度.从某在轨卫星的遥测数据流中选取10个关键特征参数进行算法验证.实验结果表明,本文所提算法能有效地从卫星遥测数据流中挖掘出全部的最小稀有模式,并且其挖掘速度比现有的方法快.