咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Pigeon-inspired optimization a... 收藏

Pigeon-inspired optimization and extreme learning machine via wavelet packet analysis for predicting bulk commodity futures prices

Pigeon-inspired optimization and extreme learning machine via wavelet packet analysis for predicting bulk commodity futures prices

作     者:Feng JIANG Jiaqi HE Zhigang ZENG 

作者机构:School of Statistics and Mathematics Zhongnan University of Economics and Law School of Automation Huazhong University of Science and Technology 

出 版 物:《Science China(Information Sciences)》 (中国科学:信息科学(英文版))

年 卷 期:2019年第62卷第7期

页      面:45-63页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by National Natural Science Foundation of China(Grant Nos.61773401,61304067,11601524,61761130081) Foundation of Hubei Province of China(Grant Nos.17G024,2017132) 

主  题:wavelet packet analysis extreme learning machine pigeon-inspired optimization bulk commodity futures price prediction directional precision 

摘      要:In this paper, a hybrid approach consisting of pigeon-inspired optimization(PIO) and extreme learning machine(ELM) based on wavelet packet analysis(WPA) is presented for predicting bulk commodity futures prices. Firstly, WPA is applied to decompose the original futures prices into a set of lower-frequency subseries. Secondly, the PIO algorithm is used to optimize the parameters of ELM and then the optimized ELM is utilized to forecast the subseries. Finally, we adopt the hybrid method to calculate the final forecasting outcomes of futures prices. In order to further test the predictive ability of the hybrid forecasting model on bulk commodity futures prices, we use the prices of West Texas Intermediate crude oil futures and Chicago Board of Trade soybean futures to make one-step, two-step and four-step ahead predictions. In comparison with complete ensemble empirical mode decomposition with adaptive noise, empirical mode decomposition and singular spectrum analysis, WPA is the most suitable for decomposing bulk commodity futures *** experimental outcomes show that the hybrid WPA-PIO-ELM model has better performance on horizontal precision, directional precision and robustness.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分