咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >PCNN Model Analysis and Its Au... 收藏

PCNN Model Analysis and Its Automatic Parameters Determination in Image Segmentation and Edge Detection

PCNN Model Analysis and Its Automatic Parameters Determination in Image Segmentation and Edge Detection

作     者:DENG Xiangyu MA Yide 

作者机构:School of Information Science and Engineering Lanzhou University School of Electronics and Information EngineeringLanzhou Institute of Technology 

出 版 物:《Chinese Journal of Electronics》 (电子学报(英文))

年 卷 期:2014年第23卷第1期

页      面:97-103页

核心收录:

学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程] 

基  金:supported by the National Natural Science Foundation of China(No.61175012) the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110211110026) the Education Department Graduate Tutor Project of Gansu,China(No.1014-02) 

主  题:Pulse coupled neural network(PCNN) model Neuron firing mechanism Parameters determination Image segmentation Edge detection model 

摘      要:The Pulse coupled neural network(PCNN)has been widely used in digital image processing, but the automatic parameters determination is still a difficult aspect, which becomes the focus of PCNN research. In this paper, by the classical solution to difference equations and the time-domain analysis of PCNN model, we provide the expressions of the firing time and the firing period of neurons, and reveal the mathematics firing phenomenon of PCNN. Based on this, we propose a new method of automatic parameters determination based on both eliminating the mathematics firing and getting the highest efficiency of PCNN. We also present an edge detection model on the basis of image segmentation of PCNN and a method to determine automatically the parameters of the model. Experimental results prove the validity and efficiency of our proposed algorithm for the segmentation and the edge detection of the test images.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分