Homomorphisms between JC~*-algebras and Lie C(?)-algebras
Homomorphisms between JC~*-algebras and Lie C(?)-algebras作者机构:Department of Mathematics Chungnam National University Daejeon 305 764 South Korea Department of Mathematics Shanxi Teachers University Linfen 041004 P. R. China Department of Mathematics Shanxi University Taiyuan 030006 P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2005年第21卷第6期
页 面:1391-1398页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 070101[理学-基础数学]
主 题:*-homomorphism JC*-algbera Lie C*-algebra Stability Linear functional equation
摘 要:It is shown that every almost *-homomorphism h : A→B of a unital JC*-algebra A to a unital JC*-algebra B is a *-homomorphism when h(rx) = rh(x) (r 〉 1) for all x∈A, and that every almost linear mapping h : A→B is a *-homomorphism when h(2^nu o y) - h(2^nu) o h(y), h(3^nu o y) - h(3^nu) o h(y) or h(q^nu o y) = h(q^nu) o h(y) for all unitaries u ∈A, all y ∈A, and n = 0, 1,.... Here the numbers 2, 3, q depend on the functional equations given in the almost linear mappings. We prove that every almost *-homomorphism h : A→B of a unital Lie C*-algebra A to a unital Lie C*-algebra B is a *-homomorphism when h(rx) = rh(x) (r 〉 1) for all x ∈A.