咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Homomorphisms between JC~*-alg... 收藏

Homomorphisms between JC~*-algebras and Lie C(?)-algebras

Homomorphisms between JC~*-algebras and Lie C(?)-algebras

作     者:Chun Gil PARK Jin Chuan HOU Sei Qwon OH 

作者机构:Department of Mathematics Chungnam National University Daejeon 305 764 South Korea Department of Mathematics Shanxi Teachers University Linfen 041004 P. R. China Department of Mathematics Shanxi University Taiyuan 030006 P. R. China 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2005年第21卷第6期

页      面:1391-1398页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:Grant No.R05-2003-000-10006-0 from the Basic Research Program of the Korea Science & Engineering Foundation.NNSF of China and NSF of Shanxi Province 

主  题:*-homomorphism JC*-algbera Lie C*-algebra Stability Linear functional equation 

摘      要:It is shown that every almost *-homomorphism h : A→B of a unital JC*-algebra A to a unital JC*-algebra B is a *-homomorphism when h(rx) = rh(x) (r 〉 1) for all x∈A, and that every almost linear mapping h : A→B is a *-homomorphism when h(2^nu o y) - h(2^nu) o h(y), h(3^nu o y) - h(3^nu) o h(y) or h(q^nu o y) = h(q^nu) o h(y) for all unitaries u ∈A, all y ∈A, and n = 0, 1,.... Here the numbers 2, 3, q depend on the functional equations given in the almost linear mappings. We prove that every almost *-homomorphism h : A→B of a unital Lie C*-algebra A to a unital Lie C*-algebra B is a *-homomorphism when h(rx) = rh(x) (r 〉 1) for all x ∈A.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分