基于自适应增量学习的时间序列模糊聚类算法
Adaptive Incremental Learning Based Fuzzy Clustering of Time Series作者机构:北京科技大学自动化学院北京100083 北京科技大学自动化学院工业过程知识自动化教育部重点实验室北京100083
出 版 物:《电子学报》 (Acta Electronica Sinica)
年 卷 期:2019年第47卷第5期
页 面:983-991页
核心收录:
学科分类:08[工学] 0835[工学-软件工程] 0802[工学-机械工程] 080201[工学-机械制造及其自动化]
基 金:国家自然科学基金(No.61572073) 北京科技大学中央高校基本科研业务费专项资金资助(No.FRF-BD-17-002A) 北京市重点学科共建项目(No.XK100080537)
摘 要:针对现存可用于时间序列的增量式模糊聚类算法往往需要设置多个控制参数的问题,本文提出了一种基于自适应增量学习的时间序列模糊聚类算法.该算法首先继承上一次聚类得到的簇结构信息以初始化当前聚类进程,然后在无需设置参数的情况下自适应地搜索当前数据块中的离群样本,并自动从离群样本创建新簇,最后检查空簇识别标识确定是否需要移除部分簇以保证后续聚类过程的效率.实验结果表明所提算法对等长和不等长时间序列均具有良好的聚类准确性及运行效率.