Holomorphic Anomaly Equations for the Formal Quintic
作者机构:Department of MathematicsETH ZürichZurichSwitzerland
出 版 物:《Peking Mathematical Journal》 (北京数学杂志(英文))
年 卷 期:2019年第2卷第1期
页 面:1-40页
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by SNF-200020182181,ERC-2012-AdG-320368-MCSK,ERC-2017-AdG-786580-MACI,SwissMAP the Einstein Stiftung.H.L.was supported by the Grants ERC-2012-AdG-320368-MCSK and ERC-2017-AdG-786580-MACI funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(grant agreement No 786580)
主 题:Gromov-Witten invariants Holomorphic anomaly equations Quintic threefold
摘 要:We define a formal Gromov-Witten theory of the quintic threefold via localization onℙ*** main result is a direct geometric proof of holomorphic anomaly equa-tions for the formal quintic in precisely the same form as predicted by B-model physics for the true Gromov-Witten theory of the quintic *** results sug-gest that the formal quintic and the true quintic theories should be related by trans-formations which respect the holomorphic anomaly *** a relationship has been recently found by ***,***,***,and *** via the geometry of new moduli spaces.