基于Sentinel-2A影像的玉米冠层叶绿素含量估算
Estimating the Corn Canopy Chlorophyll Content Using the Sentinel-2A Image作者机构:中国农业大学土地科学与技术学院北京100083 农业部农业灾害遥感重点实验室北京100083 国家气象中心北京100081 生态环境部卫星环境应用中心北京100094
出 版 物:《光谱学与光谱分析》 (Spectroscopy and Spectral Analysis)
年 卷 期:2019年第39卷第5期
页 面:1535-1542页
核心收录:
学科分类:083002[工学-环境工程] 0830[工学-环境科学与工程(可授工学、理学、农学学位)] 08[工学] 09[农学] 0804[工学-仪器科学与技术] 0903[农学-农业资源与环境] 0816[工学-测绘科学与技术] 081602[工学-摄影测量与遥感] 081102[工学-检测技术与自动化装置] 0811[工学-控制科学与工程]
基 金:国家自然科学基金项目(41671433 41371327) 国家重点研发计划项目(2017YFB0503900-4-2)资助
主 题:Sentinel-2A 玉米 冠层叶绿素含量 红边波段 植被指数
摘 要:农作物叶片中的叶绿素通过吸收光能参与光合作用产生化学能,及时、准确地估算叶绿素含量对于农作物长势、养分含量监测、品质评价和产量估算具有重要意义。Sentinel-2卫星的重访周期为5 d,空间分辨率为10 m,具有13个光谱波段,其中包括三个波宽仅为15 nm对叶绿素含量变化敏感的红边波段,是叶绿素含量估算的理想数据源。植被指数是基于农作物在不同波段的反射特性,通过不同波段组合方式刻画长势和叶绿素含量的差异,可用于大区域范围内的玉米冠层叶绿素含量快速、精确估算。以Sentinel-2A影像为数据源,开展基于多种植被指数的玉米冠层叶绿素含量估算方法研究。课题组于2016年8月6—11日在河北省保定市(115°29′—116°14′E, 39°5′—39°35′N)进行玉米冠层叶绿素含量的实地测量,并在每个采样位置上采用中绘i80智能RTK(real-time kinematic)测量系统进行定位。Sentinel-2A影像预处理工作包括几何校正、辐射定标和大气校正,其中大气校正使用Sen2Cor模型和SNAP模型。首先,基于预处理后的Sentinel-2A遥感影像,分别计算CI_(green)(green chlorophyll index), CI_(red-edge)(red-edge chlorophyll index), DVI(difference vegetation index), LCI(leaf chlorophyll index), MTCI(MERIS terrestrial chlorophyll index), NAVI(normalized area vegetation index), NDRE(normalized difference red-edge), NDVI(normalized difference vegetation index), RVI(ratio vegetation index), SIPI(structure insensitive pigment index)植被指数。然后,建立样方位置上实测叶绿素含量与各植被指数的统计关系,从而构建玉米冠层叶绿素含量估算模型,并以野外实测玉米冠层叶绿素含量为依据,对基于各植被指数的估算结果进行精度评价。最后,利用筛选出的最优叶绿素含量估算模型,估算研究区内的玉米冠层叶绿素含量。研究的目标为:(1)通过比较分析,构建合适的玉米冠层叶绿素含量估算模型,估算精度以决定系数R^2、均方根误差RMSE以及相对误差RE作为评价指标;(2)确定最优波段组合方案:在红边波段中选择与可见光、近红外波段组合效果更优的波段组合方案;(3)确定参与植被指数计算的红边波段的最优数量。精度评价结果表明:(1)选用的植被指数与玉米冠层叶绿素含量呈多项式拟合关系,其中使用红边波段计算的植被指数的估算结果明显优于未使用红边波段的估算结果;红边波段引入后明显提高了可见光、近红外波段对叶绿素含量的拟合的精度, CI_(green(560, 705))指数比CI_(green(560, 842))的回归模型R^2提高0.516,红边波段参与计算的DVI相对于RVI来说,估算结果更稳定。(2)对于不同的植被指数,参与运算的Sentinel-2A影像的两个红边波段,估算精度的提高程度不同。对于可见光波段参与计算的植被指数来说,在红边波段1(中心波长为705 nm)的估算精度较高,如LCI, CI_(green), DVI和RVI等;对于近红外波段参与计算的植被指数来说,在红边波段2(中心波长为740 nm)的估算精度较高,如CI_(red-edge), NDRE和NAVI等。(3)对于Sentinel-2A影像来说,两个红边波段共同参与叶绿素含量估算时能取得最高的的估算精度。选用的植被指数中, MTCI_((665, 705, 740))指数与玉米冠层叶绿素含量估算精度最高,回归模型拟合精度R^2为0.803,模型验证R^2为0.665, RMSE为3.185,相对误差RE为4.819%。MTCI_((665, 705, 740))指数计算中使用了两个红边波段,突出红边波段反射率差值变化,与玉米冠层叶绿素含量表现出很好的相关性。最后,利用优选出的基于MTCI指数的叶绿素含量估算模型,对研究区范围内的叶绿素含量进行估算并完成空间制图。