倒伏胁迫下玉米抽雄期叶面积密度光谱诊断
Spectral Diagnosis of Leaf Area Density of Maize at Heading Stage Under Lodging Stress作者机构:山东科技大学测绘科学与工程学院 农业部农业遥感机理与定量遥感重点实验室/北京农业信息技术研究中心 国家农业信息化工程技术研究中心 北京市农业物联网工程技术研究中心
出 版 物:《中国农业科学》 (Scientia Agricultura Sinica)
年 卷 期:2019年第52卷第9期
页 面:1518-1528页
核心收录:
基 金:国家自然科学基金(41571323) 北京市自然科学基金(6172011) 院创新能力建设专项(KJCX20170705)
主 题:抽雄期 倒伏胁迫 连续小波变换 LAD 玉米 高光谱
摘 要:【目的】叶面积密度(leaf area density,LAD)反映作物在垂直方向上体积内叶面积总量的差异,体现作物冠层内叶面积随着高度变化的分布状况。本文旨在探索玉米叶面积密度对于倒伏胁迫强度的表征能力及其光谱响应规律。【方法】以抽雄期倒伏夏玉米为研究对象,获取倒伏后玉米多期LAD及冠层光谱数据,对倒伏玉米冠层光谱进行一阶微分和小波变换处理,根据LAD与冠层光谱一阶微分及小波分解系数的相关性分析,筛选LAD敏感波段和最佳小波分解尺度,采用偏最小二乘法构建倒伏玉米LAD光谱诊断模型,并利用实测样本验证模型精度。【结果】玉米LAD随着倒伏胁迫程度的增强而增大,LAD可有效表征玉米倒伏胁迫强度及其自身恢复能力;玉米倒伏后冠层结构发生较大变化,倒伏玉米冠层光谱反射率较正常玉米整体增高,近红外波段的增幅相比可见光波段更高,倒伏强度越强则光谱反射率越高;LAD敏感波段主要分布在蓝光波段354—442、472—495 nm和红光波段649—829 nm以及近红外波段903—1 195 nm和1 564—1 581 nm;同一阶微分处理相比,基于连续小波变换的玉米倒伏LAD诊断模型的验证R2提高6.08%—9.11%,RMSE降低23.08%—31.63%;小波分解尺度对LAD诊断精度有一定的影响,中低尺度模型精度优于高尺度模型,其中第5尺度构建的模型对LAD的拟合效果最优(R2=0.898,RMSE=1.016)。【结论】利用连续小波变换技术对玉米冠层高光谱解析,可有效诊断倒伏胁迫下的玉米叶面积密度,可以为玉米倒伏胁迫灾情遥感监测提供必要的先验知识。