Frame Self-orthogonal Mendelsohn Triple Systems
Frame Self-orthogonal Mendelsohn Triple Systems作者机构:DepartmentofMathematicsNorthernJiaotongUniversityBeijing100044P.R.China ComputerScienceDepartmentTheUniversityofIowaIowaCityIA52242USA
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2004年第20卷第5期
页 面:913-924页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Research supported by NSFC 10371002 Partially supported by National Science Foundation under Grant CCR-0098093
主 题:Mendelsohn triple system Latin square Quasigroup Group divisible design
摘 要:A Mendelsohn triple system of order v,MTS(v)for short,is a pair(X,B)where X is a v-set(of points)and B is a collection of cyclic triples on X such that every ordered pair of distinct points from X appears in exactly one cyclic triple of *** cyclic triple(a,b,c)contains the ordered pairs(a,b),(b,c)and(c,a).An MTS(v)corresponds to an idempotent semisymmetric Latin square (quasigroup)of order *** MTS(v)is called frame self-orthogonal,FSOMTS for short,if its associated semisymmetric Latin square is frame *** is known that an FSOMTS(1~n)exists for all n≡1(mod 3)except n=10 and for all n≥15,n≡0(mod 3)with possible exception that n=*** this paper,it is shown that(i)an FSOMTS(2~n)exists if and only if n≡0,1(mod 3)and n5 with possible exceptions n ∈{9,27,33,39};(ii)an FSOMTS(3~n)exists if and only if n≥4,with possible exceptions that n ∈{6,14,18,19}.