咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Equitable Strong Edge Coloring... 收藏

Equitable Strong Edge Coloring of the Joins of Paths and Cycles

Equitable Strong Edge Coloring of the Joins of Paths and Cycles

作     者:Tao WANG 1,Ming Ju LIU 2,De Ming LI 3,1.Department of Basic Curriculum,North China Institute of Science and Technology,Hebei 065201,P.R.China 2.LMIB and Department of Mathematics,BeiHang University,Beijing 100083,P.R.China 3.Department of Mathematics,Capital Normal University,Beijing 100048,P.R.China 

作者机构:Department of Basic CurriculumNorth China Institute of Science and Technology Hebei 065201 LMIB and Department of MathematicsBeiHang University Beijing 100083 Department of MathematicsCapital Normal University Beijing 100048 

出 版 物:《Journal of Mathematical Research with Applications》 (数学研究及应用(英文))

年 卷 期:2012年第32卷第1期

页      面:11-18页

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:the National Natural Science Foundation of China (Grant Nos. 10971144 11101020 11171026) the Natural Science Foundation of Beijing (Grant No. 1102015) Supported by the Fundamental Research Funds for the Central Universities(Grant Nos. 2011B019) 

主  题:adjacent strong edge coloring equitable edge coloring joins of paths cycle,maximum degree chromatic index. 

摘      要:For a proper edge coloring c of a graph G,if the sets of colors of adjacent vertices are distinct,the edge coloring c is called an adjacent strong edge coloring of *** c i be the number of edges colored by *** |c i c j | ≤ 1 for any two colors i and j,then c is an equitable edge coloring of *** coloring c is an equitable adjacent strong edge coloring of G if it is both adjacent strong edge coloring and equitable edge *** least number of colors of such a coloring c is called the equitable adjacent strong chromatic index of *** this paper,we determine the equitable adjacent strong chromatic index of the joins of paths and ***,we show that the equitable adjacent strong chromatic index of the joins of paths and cycles is equal to the maximum degree plus one or two.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分