Characterization of Compact Support of Fourier Transform for Orthonormal Wavelets of L^2(R^d)
Characterization of Compact Support of Fourier Transform for Orthonormal Wavelets of L^2(R^d)作者机构:Department of Mathematics University of California Davis USA
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2005年第21卷第4期
页 面:855-864页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Orthonormal wavelets Multiresolution analysis Scaling function Compact support
摘 要:Let{ψμ} be an orthonormal wavelet of L^2(R^d) and the support of a whole of its Fourier transform be Uμsupp{ψμ}=Пi=1^d[Ai, Di]-Пi=1^d(Bi, Ci), Ai≤Bi≤Ci≤Di. Under the weakest condition that each │ψμ│, is continuous for ω ∈ δ(Пi=1^d[Ai, Di]), a characterization of the above support of a whole is given.