咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Moderate deviations and centra... 收藏

Moderate deviations and central limittheorem for small perturbationWishart processes

Moderate deviations and central limittheorem for small perturbationWishart processes

作     者:Lei CHEN Fuqing GAO Shaochen WANG 

作者机构:School of Mathematics and Statistics Wulhan University Wuhan 430072 China 

出 版 物:《Frontiers of Mathematics in China》 (中国高等学校学术文摘·数学(英文))

年 卷 期:2014年第9卷第1期

页      面:1-15页

核心收录:

学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学] 

基  金:Acknowledgements The authors would like to thank anonymous reviewers for their valuable comments and suggestions. This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200804860048) and the National Natural Science Foundation of China (Grant No. 11171262) 

主  题:Large deviation moderate deviation central limit theorem Wishart vprocess eigenvalue 

摘      要:Let X^ε be a small perturbation Wishart process with values in the set of positive definite matrices of size m, i.e., the process X^ε is the solution of stochastic differential equation with non-Lipschitz diffusion coefficient: dXt^ε = √εXt^εtdBt' + dBt'√εXt^ε + ρImdt, X0 = x, where B is an rn x m matrix valued Brownian motion and B' denotes the transpose of the matrix B. In this paper, we prove that { (Xt^ε-Xt^0)/√εh^2(ε),ε 〉 0} satisfies a large deviation principle, and (Xt^ε - Xt^0)/√ε converges to a Gaussian process, where h(ε) → +∞ and √ε h(ε) →0 as ε →0. A moderate deviation principle and a functional central limit theorem for the eigenvalue process of X^ε are also obtained by the delta method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分