Moderate deviations and central limittheorem for small perturbationWishart processes
Moderate deviations and central limittheorem for small perturbationWishart processes作者机构:School of Mathematics and Statistics Wulhan University Wuhan 430072 China
出 版 物:《Frontiers of Mathematics in China》 (中国高等学校学术文摘·数学(英文))
年 卷 期:2014年第9卷第1期
页 面:1-15页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
主 题:Large deviation moderate deviation central limit theorem Wishart vprocess eigenvalue
摘 要:Let X^ε be a small perturbation Wishart process with values in the set of positive definite matrices of size m, i.e., the process X^ε is the solution of stochastic differential equation with non-Lipschitz diffusion coefficient: dXt^ε = √εXt^εtdBt' + dBt'√εXt^ε + ρImdt, X0 = x, where B is an rn x m matrix valued Brownian motion and B' denotes the transpose of the matrix B. In this paper, we prove that { (Xt^ε-Xt^0)/√εh^2(ε),ε 〉 0} satisfies a large deviation principle, and (Xt^ε - Xt^0)/√ε converges to a Gaussian process, where h(ε) → +∞ and √ε h(ε) →0 as ε →0. A moderate deviation principle and a functional central limit theorem for the eigenvalue process of X^ε are also obtained by the delta method.