Counting the number of indecomposable representations and a q-analogue of the Weyl-Kac denominator identity of type _n
Counting the number of indecomposable representations and a q-analogue of the Weyl-Kac denominator identity of type _n作者机构:College of Mathematics and System SciencesXinjiang UniversityUrumqi 830046China
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2008年第51卷第6期
页 面:1027-1035页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:the Doctoral Program of Higher Education(Grant No.20030027002)
主 题:Frobenius map F-stable representation quiver with automorphism denominator identity
摘 要:By using Frobenius maps and F-stable representations,we count the number of isomor- phism classes of indecomposable representations with the fixed dimension vector of a species of type _n over a finite field,first,and then,as an application,give a q-analogue of the Weyl-Kac denominator identity of type _n.