On the Order of Magnitude of the Divisor Function
On the Order of Magnitude of the Divisor Function作者机构:MathmatiqueUniversit Louis-Pasteur et G.N.R.S.7 rue Rene Descartes. 67084-Strasbourg Cedex France
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2006年第22卷第2期
页 面:377-382页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Divisor function Prime divisors Bernoulli random walk
摘 要:Let D be an increasing sequence of positive integers, and consider the divisor functions: d(n, D) =∑d|n,d∈D,d≤√n1, d2(n,D)=∑[d,δ]|n,d,δ∈D,[d,δ]≤√n1, where [d,δ]=1.c.m.(d,δ). A probabilistic argument is introduced to evaluate the series ∑n=1^∞and(n,D) and ∑n=1^∞and2(n,D).