抛物型积分-微分方程有限元近似的超收敛性质
SUPERCONVERGENCE OF FINITE ELEMENT APPROXIMATIONS TO INTEGRO-DIFFERENTIAL EQUATIONS OF PARABOLIC TYPE作者机构:东北大学数学系 沈阳110006
出 版 物:《高等学校计算数学学报》 (Numerical Mathematics A Journal of Chinese Universities)
年 卷 期:2001年第23卷第3期
页 面:193-201页
核心收录:
学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学]
主 题:superconvergence and ultraconvergence integro-differntial equation of parabolic type.
摘 要:The object of this paper is to investigate the superconvergence and ultraconvergence for the finite element approximations to integro-differential equations of parabolic type in one dimensional case. It is shown that the Lobatto, Gauss and quasi-Lobatto points on each subdivision element are superconvergence points for function, order-one and order-two derivative approximations, respectively. Another important result in our paper is that under a certain condition, we establish the ultraconvergence alternating theorem, where by ultraconvergence we denote the convergence rates are two-order higher than the optimal global convergence rates.