Semi-empirical Likelihood Confidence Intervals for the Differences of Quantiles with Missing Data
Semi-empirical Likelihood Confidence Intervals for the Differences of Quantiles with Missing Data作者机构:School of Mathematical Sciences Guangxi Normal University Guilin 541004 P. R. China Department of Mathematics Harbin University Harbin 150086 P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2009年第25卷第5期
页 面:845-854页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 08[工学] 080401[工学-精密仪器及机械] 0804[工学-仪器科学与技术] 080402[工学-测试计量技术及仪器] 0838[工学-公安技术] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:Supported by the National Natural Science Foundation of China (10661003) the Natural Science Foundation of Guangxi (0728092)
主 题:empirical likelihood confidence interval quantile missing data hot deck imputation
摘 要:Detecting population (group) differences is useful in many applications, such as medical research. In this paper, we explore the probabilistic theory for identifying the quantile differences .between two populations. Suppose that there are two populations x and y with missing data on both of them, where x is nonparametric and y is parametric. We are interested in constructing confidence intervals on the quantile differences of x and y. Random hot deck imputation is used to fill in missing data. Semi-empirical likelihood confidence intervals on the differences are constructed.